

4. Dimensions

Unit: mm

Туре	Dimensions (mm)							
(Inch Size code)	L	w	С	d	t			
CFS04 (0402)	1.0±0.1	0.52±0.05	0.2±0.1	0.25±0.1	0.35±0.05			
CFS06 (0603)	1.6±0.1	0.80±0.10	0.3±0.2	0.35±0.2	0.45±0.10			
CFS12 (1206)	3.1 <u>±</u> 0.1	1.55±0.10	0.5±0.3	0.50±0.2	0.60±0.10			

5. Applications and ratings

Part Designation	Marking	Rated Current	Fusing Time	Resistance (mΩ) Tolerance±25%	Rated Voltage	Breaking Capacity	
CFS04V3TR50	F	0.50A		300			
CFS04V3TR80	K	0.80A		78			
CFS04V3T1R0	L	1.00A		75			<75℃at 100% rated
CFS04V3T1R25	M	1.25A		44			
CFS04V3T1R50	Р	1.50A	Open within	34.5		D 0001/	
CFS04V3T1R60	N	1.60A	5sec.at250%	29.5	DC 32V	DC32V 35A	
CFS04V3T2R0	S	2.00A	rated current	23		007	current
CFS04V3T2R50	Т	2.50A		18			
CFS04V3T3R0	3	3.00A		15			
CFS04V3T3R15	U	3.15A		14			
CFS04V3T4R0	W	4.00A		10			

*Resistance valve was measured with less than 10% of rated current

Thin Film Chip Fuse

Document No TCFS-XX0S004M

2022/02/23

3/19

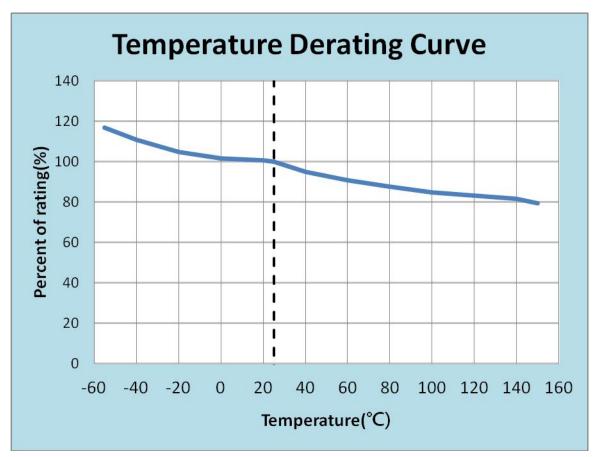
Issued date

Page

(AEC-Q200 tested/ CNUS)

Part Designation	Marking	Rated Current	Fusing Time	Resistance (mΩ) Tolerance± 25%	Rated Voltage	Breaking Capacity	Body Temperature rising
CFS06V5TR40	<u>E</u>	0.4A		350	DC 50V	50A	
CFS06V5TR50	F	0.50A		232	20.001	DC50V/ AC35V	
CFS06V3TR63	Ι	0.63A		150			
CFS06V3TR70	J	0.70A		148			<75℃at
CFS06V3TR80	K	0.80A		113			
CFS06V3T1R0	L	1.00A		67			
CFS06V3T1R25	M	1.25A	Open within	50			
CFS06V3T1R50	Р	1.50A	5sec.at250%	42			100% rated
CFS06V3T1R60	Ν	1.60A	rated current	40	DC 32V	50A	current
CFS06V3T2R0	S	2.00A		27		DC32V/	
CFS06V3T2R50	Т	2.50A		19.5		AC35V	
CFS06V3T3R00	3	3.00A		16			
CFS06V3T3R15	U	3.15A		15			
CFS06V3T4R0	W	4.00A		11			
CFS06V3T5R0	Y	5.00A		8			
CFS06V3T6R0	<u>6</u>	6.00A		6			

*Resistance valve was measured with less than 10% of rated current


Part Designation	Marking	Rated Current	Fusing Time	Resistance (mΩ) Tolerance±25%	Rated Voltage	Breaking Capacity	Body Temperature rising
CFS12V6TR50	F	0.50A		596			
CFS12V6TR80	K	0.80A		165			
CFS12V6T1R0	L	1.00A		132	DC 63V	DC63V 50A	<75℃at
CFS12V6T1R25	M	1.25A	Open within	90			
CFS12V6T1R50	Р	1.50A		79			
CFS12V6T2R0	S	2.00A	5sec.at250%	41			100% rated
CFS12V3T2R50	Т	2.50A	rated current	33			current
CFS12V3T3R00	3	3.00A		23			
CFS12V3T4R0	W	4.00A		15.5	DC 32V	DC32V 50A	
CFS12V3T5R0	Y	5.00A		13			
CFS12V3T7R0	Z	7.00A		7			

*Resistance valve was measured with less than 10% of rated current

6 Temperature Derating Curve

- 6.1 Normal Ambient Temperature: 25°C
- 6.2 Operating Temperature: -55° C ~ 150° C, with proper derating factor as below:

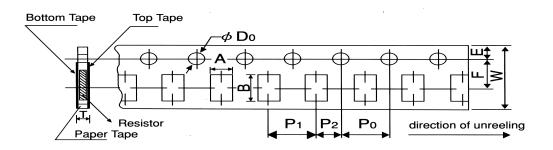
Thin Film Chip Fuse

Document No TCFS-XX0S004M

(AEC-Q200 tested/ CAEC-Q200 te

Issued date 2022/02/23 Page 5/19

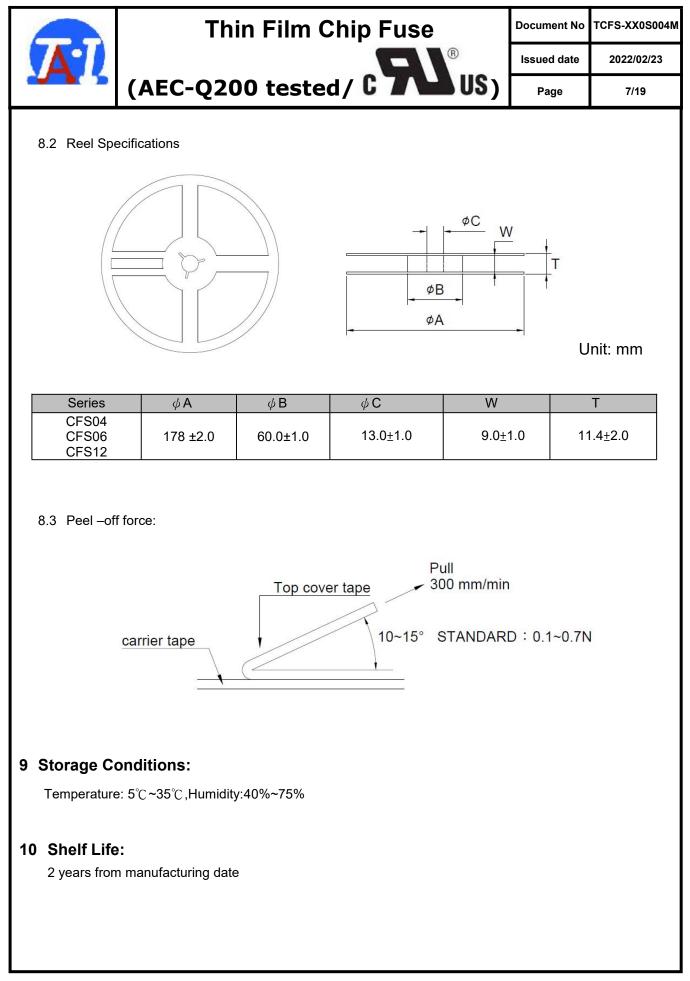
US

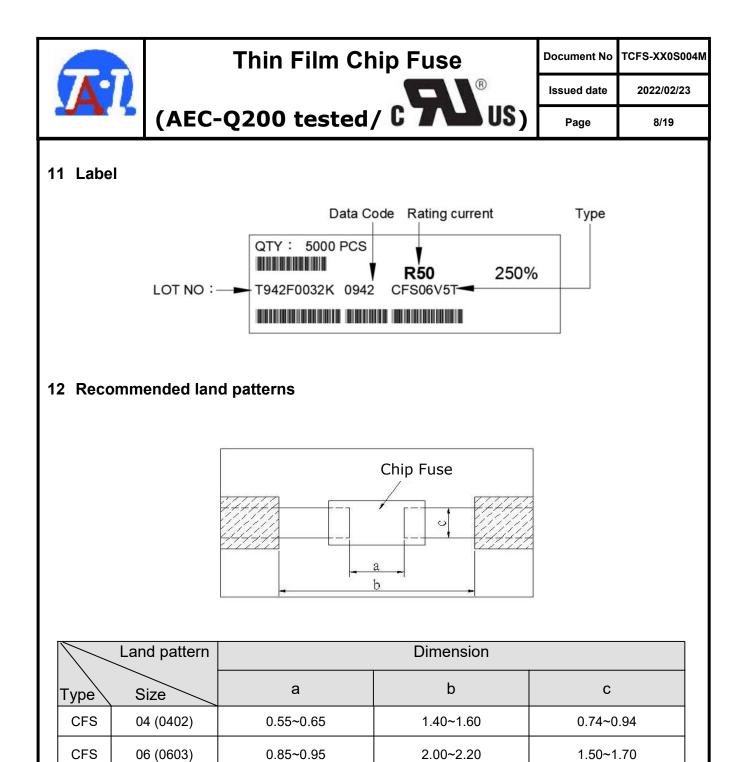

7 Reliability Tests

No.	Parameter	Test Method	Requirement
#1	Solderability	aging 4 hours at 150 °C dry heat Lead-free solder bath at 245±3 °C for 3±0.5 seconds. 260±3 °C for 7±0.5 seconds	95% coverage minimum
#2	Resistance to solder Heat	Immerse the specimens in and eutectic solder at $260+5/-0$ °C for $10\pm1S$.	±10%
#3	Moisture Resistance	T=24 hours / Cycle ,10Cycles . Notes: Steps 7a& 7b not required. Unpowered .	±10%
#4	Thermal Shock	Temperature -55°C/+155°C. Number of cycles required:300 Maximum transfer time-20 seconds, Dwell time-15 minutes. Air-Air.	±10%
#5	Mechanical Shock	Wave Form: Tolerance for half sine shock pulse. Peak value is 100g's. Normal duration(D) is 6(ms)	±10%
#6	Vibration	5 g's for 20 min., 12 cycles each of 3 orientations. (Note: Test from 10-2000 Hz.)	±10%
#7	Terminal Strength	Force of 1.8kg for 1206/0603 Force of 1.0kg for 0402	±10%
#8	High Temperature Storage	with exemptions 1000 hrs. @ T=125°C. Unpowered. Measurement at 24±2 hours after test conclusion.	±10%
#9	Temperature Cycling	 1000 Cycles (-40°C to +125°C) 30min maximum dwell time at each temperature extreme. 1 min. Maximum transition time. Measurement at 24±4 hours after test conclusion. 	±10%
#10	Bias Humidity	1000 hours 85°C/85%RH. Note: Specified conditions: 10% of operating current. Measurement at 24±2 hours after test conclusion.	±10%
#11	Operational Life	1000 hours TA=85°C at 70% rated current. Measurement at 24±2 hours after test conclusion	±10%
#12	Resistance to Solvent	 a:Isopropyl Alcohol : Mineral Spirits= 1 : 3 b:Terpene Defluxer (Bioact EC-7R) c:Deionized water : Propylene Glycol : Monomethyl Ether : monoethanolamine = 42 : 1 : 1 	No evident damages on protective coating
#13	Board Flex(Bending)	3mm deflection	±10%
#14	Carrying capacity	Rated current ,4hr	±10%
#15	Fusing Time	250% of its rated current	< 5 sec
#16	Interrupting Ability	After the fuse is interrupted ,rated voltage applied for 30sec again	No mechanical damages
#17	Temperature Rise	100% of its rated current, Measure of surface temperature	ΔT<75°C
#18	Residual Resistance	Measure DC resistance after fusing	$10k\Omega$ and more
#19	Low Temperature Storage	1000 hrs. @ T=-55°C. Unpowered. Measurement at 24±2 hours after test conclusion.	±10%

8 Taping & Reel

- 8.1 Taping Dimensions
 - 4mm pitch paper




Packing	Туре	A	В	W	F	E	P ₁	P ₂	P ₀	D ₀	Т
Paper Tape	CFS04	0.7±0.05	1.2±0.05	8.0±0.2	3.5±0.05	1.75±0.1	2.0±0.1	2.0±0.05	4.0±0.1	+0.1 φ1.5 0	0.45±0.1
Paper Tape	CFS06	1.1±0.1	1.9±0.1	8.0±0.2	3.5±0.05	1.75 <u>±</u> 0.1	4.0 <u>+</u> 0.1	2.0±0.05	4.0±0.1	+0.1 φ 1.5 -0	0.64±0.1
Paper Tape	CFS12	2.0 <u>+</u> 0.15	3.6±0.2	8.0±0.2	3.5 <u>+</u> 0.05	1.75 <u>+</u> 0.1	4.0 <u>±</u> 0.1	2.0 <u>±</u> 0.05	4.0±0.1	+0.1 φ 1.5 -0	0.84 <u>±</u> 0.1

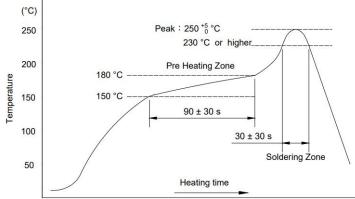
Unit: mm

		Paper Tape
Тур	oe Size	2 mm pitch
, , , , , , , , , , , , , , , , , , , 		180mm/R
CFS	04	10000

Type	series	Paper Tape 4 mm pitch
		180mm/R
CFS	06	5000
CFS	12	5000

0.85~0.95

0.95~1.05


CFS

12 (1206)

2.30~2.50

4.40~5.00

Peak : $250+5/-0^{\circ}C$, 5 sec. Pre-heat Zone : 150 to 180 $^{\circ}C$, 90 ± 30 sec Soldering Zone : $230^{\circ}C$ or higher , 30 ± 10 sec

14. Approval by UL248-14

The fuses have been approved by UL. File No. of UL Recognition is E241710

15. ECN

Engineering Change Notice: The customer will be informed with ECN if there is significant modification on the characteristics and materials described in Approval Sheet.

16. Manufacturing Country & City:

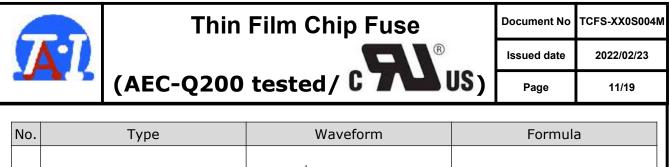
TA-I TECHNOLOGY CO., LTD. (Taiwan– Tao Yuan)

Tel: (+886) 3-3246169 Fax: (+886) 3-3246167

Associated companies:

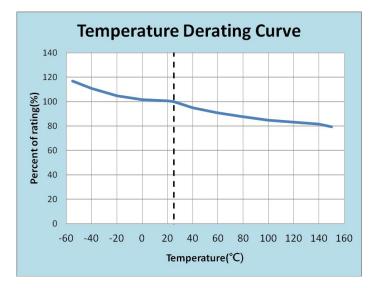
- (1) TA-I TECHNOLOGY (SU ZHOU) CO., LTD. (China Su Zhou)
 - Tel: (+86) 512-63457879 Fax: (+86) 512-63457869
- (2) TA-I TECHNOLOGY ELECTRONIC (DONGGUAN) CO., LTD. (China –Dongguan)
 - Tel: (+86) 769-8339-4790~3 Fax : (+86) 769-8339-4794
- (3) FORTUNE TASK RESISTOR FACTORY (China Dongguan)
 - Tel: (+86) 769-8339-4790~3 Fax : (+86) 769-8339-4794
- (4) TAI OHM ELECTRONICS (M) SDN. BHD. (Malaysia Penang)
 - Tel: (+60) 4- 3900480 Fax: (+60) 4-3901481
- (5) P.T.TAI ELECTRONIC Indonesia (Indonesia Jakarta)

Tel: (+62) 21-89830123 Fax: (+62) 21-89830703


Thin Film Chip Fuse	Document No	TCFS-XX0S004M
®	Issued date	2022/02/23
(AEC-Q200 tested/ C T US)	Page	10/19

17. Selection Guideline of Fuse:

- Checklist of selection factors
 - $\bigcirc Normal \ operating \ current$
 - $\odot Normal operating voltage (AC or DC)$
 - ◎Ambient Temperature
 - $\bigodot\ensuremath{\mathsf{O}}\xspace$ Overload current and length of time in which the fuse must open .
 - $\odot {\sf Type}$ of fuse (SMD or Tube) and physical size limitation (0603 or 1206)
 - ◎Agency Approval required (e.g., UL248-14)
- Normal operating current


e.g., Rectangular Wave, If I p = 1.5 A, Normal operating current = 1.5 A

No.	Туре	Waveform	Formula
1	Sinusoidal Waveform		$\frac{1}{\sqrt{2}}I_m \neq 0.707I_m$
2	All Wave Rectification		$\frac{1}{\sqrt{2}}I_m \neq 0.707I_m$
3	Half Wave		0. 5 <i>I</i> _m
4	Triangle Waveform		$\frac{1}{3}I_m \neq 0.577I_m$
5	Rectangular Waveform		I _m
6	Trapezoidal Waveform		$I_m \sqrt{1 - \frac{8\alpha}{3T}}$
		· /	

7	Rectangular Pulse	$I_m \sqrt{\frac{r}{T}}$
8	Triangle Pulse	$I_m \sqrt{\frac{\tau}{3T}}$

- Derating ratio for different ambient Temperature
 - ◎ Referring to bottom figure and select the appropriate derating ratio:
 - e.g., Ambient temperature is 60 degree C
 - the derating ratio≒0.90

- Calculating the required rating of fuse needed.
 - $\odot\,$ Safety coefficient: 70% is safety coefficient from practical experience

```
\bigcirc \frac{Normal \ Operating \ Current}{0.7 \times derating \ ratio} < rating \ current \ of \ fuse
```

© e.g.

Condition: Normal operating current =1.5 A Ambient temperature 40 $^{\circ}C$: Derating ratio = 0.95

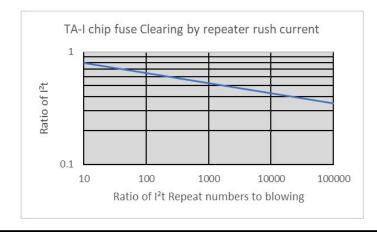
			Th	in Film C	Chip	Fu	se	Doo	ument No	TCFS-	XX0S004
					0 tested/ CRUS)				Issued date		2/02/23
	(A	EC-	Q20	00 teste	d/ (US)	Page	1	12/19
0.7	1.5 × 0.9	– < rat 5	ting cu	rrent of fuse							
	2.255	< ratir	ng curre	ent of fuse							
■ Deter	minati	on of	the ty	pe of fuse							
e.g.Co	onditior	n:									
🔶 Ca	lculatin	g value	=2.25	5 A , 2.255A < r	ating c	urrent o	of fuse				
🔶 No	rmal op	erating	ı voltag	e : DC 12 V							
♦ Fol	lowing	bottom	index-	table: suggestin	g use (CFS06	V3T2R	50.			
Part Designation	Marking	Rated Current	Rated Voltage	Part Designation	Marking	Rated Current	Rated Voltage	Part Designation	Marking	Rated Current	Rated Voltage
CFS04V3TR50	F	0.5A	32V	CFS06V5TR40	E	0.40A	50V	CFS12V6TR5) F	0.50A	63V
CFS04V3TR80	К	0.80A	32V	CFS06V5TR50	F	0.5A	50V	CFS12V6TR8) К	0.80A	63V
CFS04V3T1R0	L	1.00A	32V	CFS06V3TR63	I	0.63A	32V	CFS12V6T1R) L	1.00A	63V
CFS04V3T1R25	M	1.25A	32V	CFS06V3TR70	J	0.7A	32V	CFS12V6T1R2	5 <u>M</u>	1.25A	63V
CFS04V3T1R50	Р	1.50A	32V	CFS06V3TR80	К	0.80A	32V	CFS12V6T1R5	0 P	1.50A	63V
CFS04V3T1R60	N	1.60A	32V	CFS06V3T1R0	L	1.00A	32V	CFS12V6T2R) S	2.00A	63V
CFS04V3T2R0	S	2.00A	32V	CFS06V3T1R25	M	1.25A	32V	CFS12V3T2R5	0 Т	2.50A	32V
CFS04V3T2R50	Т	2.50A	32V	CFS06V3T1R50	Р	1.50A	32V	CFS12V3T3R0	0 3	3.00A	32V
CFS04V3T3R0	3	3.00A	32V	CFS06V3T1R60	N	1.60A	32V	CFS12V3T4R) W	4.00A	32V
CFS04V3T3R15	U	3.15A	32V	CFS06V3T2R0	s	2.00A	32V	CFS12V3T5R) Y	5.00A	32V
CFS04V3T4R0	W	4.00A	32V	CFS06V3T2R50	Т	2.50A	32V	CFS12V3T7R) Z	7.00A	32V
				CFS06V3T3R00	3	3.00A	32V				
				CFS06V3T3R15	U	3.15A	32V				
				CFS06V3T4R0	w	4.00A	32V				
				CFS06V3T5R0	Y	5.00A	32V				
				CFS06V3T6R0	6	6.00A	32V				

Inrush current:

- Considering inrush waveform & calculate I²t (A²s) value
- Choosing fuse's I²t (A²s) value > calculate I²t (A²s) value
- Considering Ratio of I²t repeat numbers to blowing .
- ♦ Confirm with us.
- e.g., choosing 0603 Fuse

Condition:

Thin Film Chip Fuse

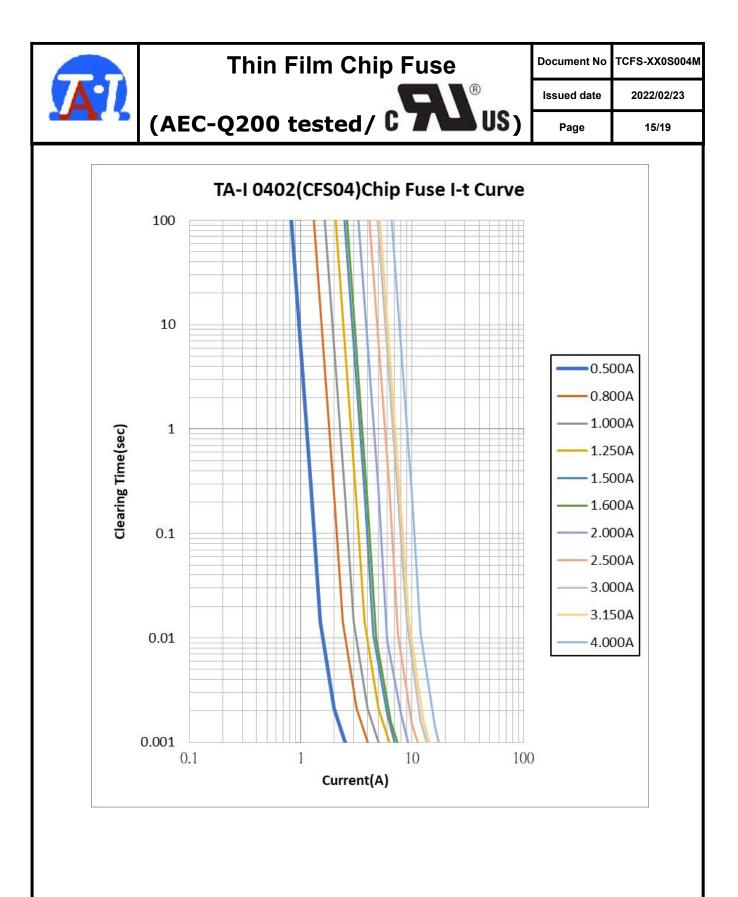

Document No TCFS-XX0S004M

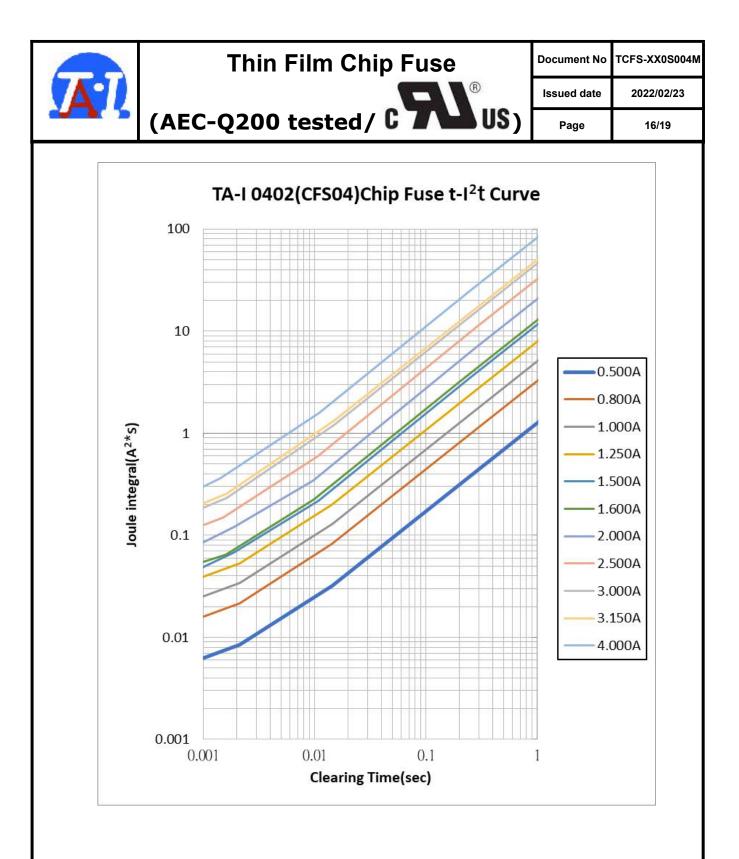
(AEC-Q200 tested/ CTLUS)

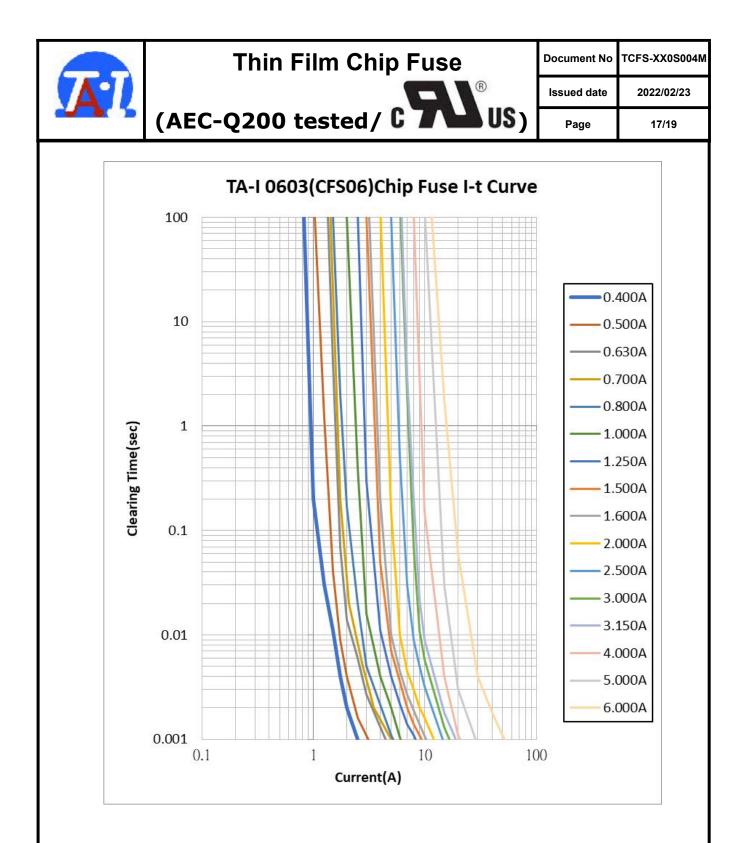
- 1. Rectangular Wave, Ip = 4 A, t = 1 ms , calculate $Ip^{2}t = 4^{2} x 1 x 10^{-3} = 0.016 (A^{2}s)$
- 2. Choosing CFS06V3T1R25,I²t = 0.057 (A²s) \rightarrow Page 13 index-table
- 3. Inrush shock : 100,000 times (=0.35) \rightarrow inrush ratio
- 4. Choosing fuse's I²t (A²s) value X Derating ratio (inrush 100000 times) > calculate I²t (A²s) value
- 5. 0.057 x 0.35 = 0.01995 (A²s) > 0.016 \rightarrow CFS06V3T1R25 is able to meet circuit's application

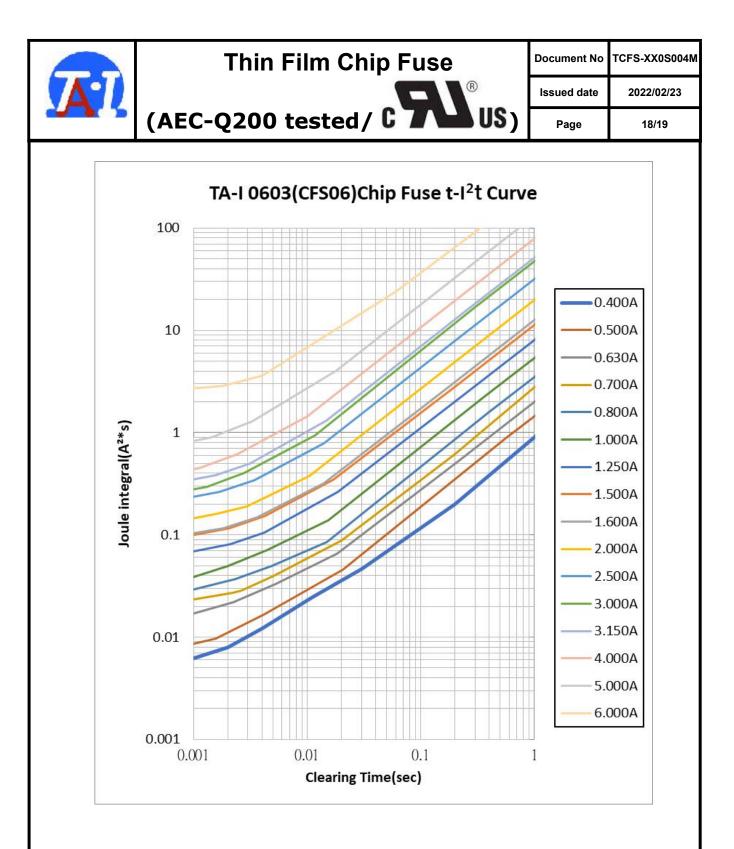
TA-I FUSE I ² t (A ² s)						
Part Number	Typical I ² t (A ² s)*	Part Number	Typical I ² t (A ² s)*	Part Number	Typical I ² t (A ² s)*	
CFS04V3TR50	0.00370	CFS06V5TR40	0.004	CFS12V6TR50	0.030	
CFS04V3TR80	0.00947	CFS06V5TR50	0.009	CFS12V6TR80	0.068	
CFS04V3T1R0	0.01479	CFS06V3TR63	0.017	CFS12V6T1R0	0.098	
CFS04V3T1R25	0.02310	CFS06V3TR70	0.023	CFS12V6T1R25	0.155	
CFS04V3T1R50	0.02400	CFS06V3TR80	0.024	CFS12V6T1R50	0.236	
CFS04V3T1R60	0.03734	CFS06V3T1R0	0.026	CFS12V6T2R0	0.339	
CFS04V3T2R0	0.04040	CFS06V3T1R25	0.057	CFS12V3T2R50	0.605	
CFS04V3T2R50	0.06760	CFS06V3T1R50	0.081	CFS12V3T3R00	0.933	
CFS04V3T3R0	0.09860	CFS06V3T1R60	0.086	CFS12V3T4R0	1.537	
CFS04V3T3R15	0.10868	CFS06V3T2R0	0.115	CFS12V3T5R0	2.533	
CFS04V3T4R0	0.11450	CFS06V3T2R50	0.200	CFS12V3T7R0	5.684	
		CFS06V3T3R00	0.210			
		CFS06V3T3R15	0.279			
		CFS06V3T4R0	0.326			
		CFS06V3T5R0	0.622			
		CFS06V3T6R0	2.700			

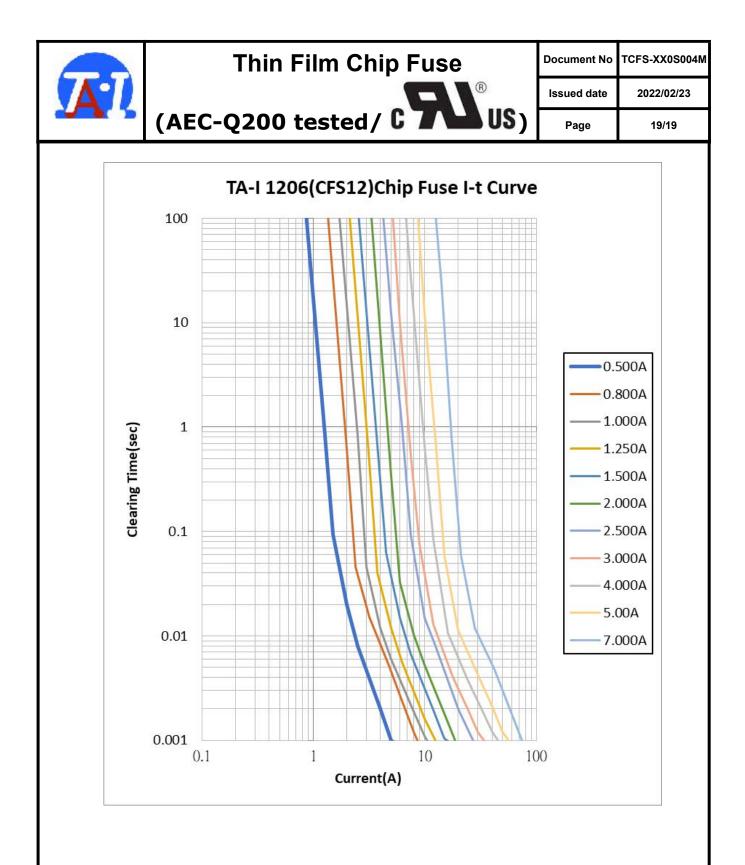
Note*: Typical I²t value is measured at 10x-rated current, application with surge over 10x-rated current. Please confirm with us.




TA-I TECHNOLOGY CO., LTD




1	Sinusoidal Waveform (1 Cycle)		$\frac{1}{2}I_m^2t$
2	Sinusoidal Waveform (1/2 Cycle)		$\frac{1}{2}{I_m}^2t$
3	Triangle Waveform		$\frac{1}{3}{I_m}^2t$
4	Rectangular Waveform		$I_m^2 t$
5	Trapezoidal Waveform	0 t ₁ t ₂ t ₃ t	$\frac{1}{3}I_m^2 t + I_m^2(t_1 - t_2) + \frac{1}{3}I_m^2(t_2 - t_3)$
6	Various Waveform 1		$I_1I_2t + \frac{1}{3}(I_1 - I_2)^2t$
7	Various Waveform 2	O t ₁ t ₂ t ₃ 1 1	$\begin{split} &I_1I_2t + \left[I_1I_2t + \frac{(I_1 - I_2)^2}{3}\right] * \\ &(t_2 - t_1) + \frac{1}{3}(I_2)^2(t_3 - t_2) \end{split}$
8	Charge/Discharge Waveform	$0.368 \text{Im} \qquad i(t)=\text{Ime}^{-tc}$ $0.368 \text{Im} \qquad t$	$\frac{1}{2}(I_m^2\tau)$
9	Lightning Surge Waveform	$0.5 \lim_{t_i} \frac{1}{t_i}$	$I_m^2 \left[\frac{t_1}{3} + 0.721(t_2 - t_1) \right]$


TA-I TECHNOLOGY CO., LTD

