

Description

Current Limiting Module (CLM) is a chip type surface mountable device that can protect against both overcurrent and overcharging. It comprises a fuse element to ensure stable operation under normal electrical current and to cut off the current when overcurrent occurs. It also comprises a resistive heating element that could be used in combination with a voltage detecting means, such as IC and FET. When overvoltage is detected, the heating element is electrically excited to generate heat to blow the fuse element to achieve overvoltage protection.

Features

- · Halogen-free
- Overcharging protection
- Overcurrent protection

Application

- Self Balancing
- E-Bike
- Power Tool

- Surface mountable
- · Fast response time

- Automotive applications
- Energy Storage systems
- Drone

Agency Approval and Environmental Compliance

Electrical Specifications

	Irated Cells in	V _{max} I _{br}	Ibreak	break VOP	Resistance		Agency Approval		
Part Number	(A)	series	(V _{DC})	(A)	(V)	R _{heater} (Ω)	R _{fuse} (mΩ)	c FL us	LUVRheinland
CLM2213P1230C	30	3	62	80	9.9~13.5	4.5 ~ 7.3	0.5 ~ 2.5	~	-
CLM2213P1430C	30	4	62	80	13.4 ~ 18.4	8.4 ~ 13.3	0.5 ~ 2.5	~	-
CLM2213P2030C	30	5	62	80	17.1 ~ 23.5	13.8 ~ 21.7	0.5 ~ 2.5	~	-
CLM2213P3030C	30	7	62	80	23.0 ~ 31.5	24.6 ~ 39.3	0.5 ~ 2.5	~	-
CLM2213P4030C	30	9~10	62	80	34.2 ~ 46.9	64.0 ~ 87.0	0.5 ~ 2.5	~	-
CLM2213P5030C	30	12~14	62	80	45.2 ~ 62.0	130.0 ~ 152.0	0.5 ~ 2.5	~	-

Electrical Characteristics

Current Capacity	100% x I _{rated} No Melting
Cut Time	200% x I _{rated} < 1 min
Interrupting Current	100A, power on 5 ms, power off 995 ms, 10000 cycles No Melting
Over Voltage Operation	In operation voltage range, the fusing time is <1min.

Note on Electrical Specifications & Characteristics

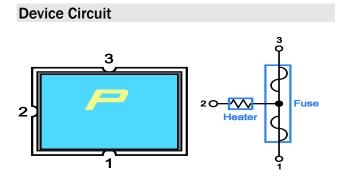
Vocabulary	
Irated	

I_{break} V_{max}

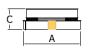
- = Current carrying capacity that is measured at 40°C thermal equilibrium condition.
- = The current that the fuse element is able to interrupt.
- = The maximum voltage that can be cut off by fuse.
- **R**_{heater} = The resistance of the heating element.
- **R**_{fuse} = The resistance of the fuse element.
- Cells in series = Number of battery cells connected in series in the circuit for CLM device to protect.
- Value specified is determined by using the PWB with 29.4mm*2oz copper traces, AWG10 covered wire, and 0.6mm glass epoxy PCB.
- Specifications are subject to change without notice.

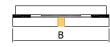
AWARNING

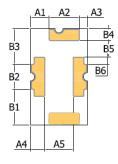
General


- Before and after mounted, the ultrasonic-cleaning or immersion-cleaning must not be done to CLM device. The flux on element would flow, and it would not be satisfied its specification when cleaning is done. In addition, a similar influence happens when the product comes in contact with cleaning-solution. These products after cleaning will not be guaranteed.
- Silicone-based oils, oils, solvents, gels, electrolytes, fuels, acids, and the like will adversely affect the properties of CLM devices, and shall not be used or applied.
- Please Do Not reuse the CLM device removed by the soldering process.
- CLM devices are secondary protection devices and are used solely for sporadic, accidental over-current or over-temperature error condition, and shall NOT be used if or when constant or repeated fault conditions (such fault conditions may be caused by, among others, incorrect pin-connection of a connector) or over-extensive trip events may occur.
- Operation over the maximum rating or other forms of improper use may cause failure, arcing, flame and/or other damage to the CLM devices.
- The performance of CLM devices will be adversely affected if they are improperly used under electronic, thermal and/or mechanical procedures and/or conditions non-conformant to those recommended by manufacturer.
- Customers shall be responsible for determining whether it is necessary to have back-up, failsafe and/or fool-proof protection to avoid or minimize damage that may result from extra-ordinary, irregular function or failure of CLM devices.
- There should be minimum of 0.1mm spacing between CLM and surrounding compounds, to maintain the product characteristics and avoid damage other surrounding compounds.
- This product is designed and manufactured only for general-use of electronics devices. We do not recommend that it is used for the applications Military, Medical and so on which may cause direct damages on life, bodies or properties.

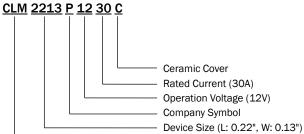
Thermal Derating Characteristics

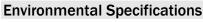

Ambient Temperature (°C)	25	40	60
Recommend Rated Current (A)	34.0	30.0	25.0





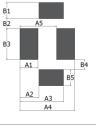
Physical Dimensions (mm.)




3.20 ± 0.2
5.40 ± 0.3
1.80 max
1.05 ± 0.1
1.70 ± 0.1
0.45 ± 0.1
0.80 ± 0.1
1.60 ± 0.1

B1	2.00 ± 0.1
B2	1.40 ± 0.1
B3	2.00 ± 0.1
B4	0.65 ± 0.1
B5	0.95 ± 0.1
B6	0.40 ± 0.1

Part Number System



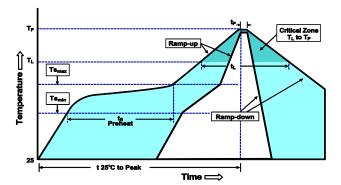
Current Limiting Module

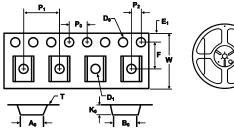
Operating/Storage Temperature	-10°C to +65 °C / 0~35°C, \leq 70%RH 3 months after shipment
Hot Passive Aging	100±5°C, 250 hours No structural damage and functional failure
Humidity Aging	60°C±2°C, 90~95%R.H. 250 hours No structural damage and functional failure
Cold Passive Aging	-20±3°C, 500 hours No structural damage and functional failure
Thermal Shock	MIL-STD-202 Method 107G +125°C /-55°C, 100 times No structural damage and functional failure
Solvent Resistance	MIL-STD-202, Method 215
Vibration	MIL-STD-883C, Method 2007.1, Condition A No structural damage and functional failure
Moisture Level Sensitivity	Level 1, J-STD-020C

Board and Solder Layout Recommend (mm)

Material		GI	ass Epoxy	PCB	
Base Thickness			0.6mm		
Copper Thickness			0.07mm	1	
Covered Wire			AWG10		
A1	1.40 ±0.1		B1	1.25 ±	0.1
A2	1.45 ±0.1		B2	0.75 ±	0.1
	0.05 + 0.4			0.40	~ 4

AT	1.40 10.1	DT	1.25 ± 0.1
A2	1.45 ±0.1	B2	0.75 ± 0.1
A3	3.35± 0.1	B3	2.40 ± 0.1
A4	4.20 ± 0.1	B4	0.75 ± 0.1
A5	2.80 ± 0.1	B5	1.25 ± 0.1


Part Marking System


Soldering Parameters

Average Ramp-Up Rate (Ts _{max} to T _P)	3°C/second max.
Preheat	
-Temperature Min (Tsmin)	150°C
-Temperature Max (Ts _{max})	200°C
-Time (Tsmin to Tsmax)	60-180 seconds
Time maintained above:	
-Temperature (TL)	217°C
-Time (t _L)	60-150 seconds
Peak Temperature (T _P)	260°C
Time within 5°C of actual Peak	
Temperature (t _P)	20-40 seconds
Ramp-Down Rate	6°C /second max.
Time 25°C to Peak Temperature	5 minutes max.
Storage Condition	0°C ~35°C, ≦ 70%RH

Tape & Reel Specification (mm.)

Devices are packaged per EIA481 and EIA-2 standard

W	12.0 ± 0.30
F	5.50 ± 0.05
E1	1.75 ± 0.10
D ₀	1.55 ± 0.05
D1	1.50 ± 0.10
Po	4.00 ± 0.10
P1	8.00 ± 0.10
P ₂	2.00 ± 0.10
Ao	3.55 ± 0.10
Bo	5.75 ± 0.10
Т	0.25 ± 0.05
Ko	1.75 ± 0.10

H 16.5 ± 0.1	
W 12.5 ± 1.5	
D	Ø62.5 ± 0.5
С	Ø330 ± 1.0

Packaging Quantity

Part Number	Tape & Reel Quantity
CLM2213PXX30C	3000

 Note 1: The temperature shown above is the top-side surface temperature of the device.

 Note 2: If the soldering temperature profile deviates from the recommended profile, devices may not meet the performance requirements

